Quantumzhao 最近的时间轴更新
Quantumzhao
ONLINE

Quantumzhao

V2EX 第 522775 号会员,加入于 2020-12-07 22:05:03 +08:00
今日活跃度排名 12213
Quantumzhao 最近回复了
@Meiyun 我也挺想加一个中文版本,无奈 WPF 的本地化不会搞,出各种 bug
@imn1 你说的这些确实没错, 并且我也发现过很多在这些方面很优秀的 todo 工具。所以 ToDue 是特意为了像我这样不太需要这些功能的比较小众的用户设计的。

至于你说的随手速记, 我觉得 ToDue 应该已经基本做到了。对于普通的提醒事项, 只需要直接在输入框打字, 然后回车就自动生成然后保存了。
117 天前
回复了 raysonlu 创建的主题 算法 关于余数,想求解是否有这样的关系
@raysonlu 比如说 5 mod 6,那么 5 可以写成 0 × 6 + 5 。然后根据取模的约定俗成的习惯,因为加号后面的那个 5 < 6 且 ≥ 0,所以 5 的余数就是 5 。同样如果把 5 和 6 替换成其他任意数字(比如 b 和 N )也是一样的(因为 b < N 且 ≥ 0 )

另外后面的证明里我用到了和某个负数同余,例如 a ≡ -b,其实意思就是 a 和 N - b 同余
117 天前
回复了 raysonlu 创建的主题 算法 关于余数,想求解是否有这样的关系
@raysonlu

我想说的是 aM congruent to b
比如第一个等式的意思是 aM = kN + b,k 为任意整数且 a 和 b < N 且 >= 0 。因此 aM 除以 N 的余数就是 b 。而 b 的余数也是 b,所以 aM 和 b 是模 N 的同余(我应该没有理解错同余的意思……?)

然后因为我接下来都是用整数模 N 的群的性质,所以就省略了 N
117 天前
回复了 raysonlu 创建的主题 算法 关于余数,想求解是否有这样的关系
@raysonlu 对,就是同余的意思。其实最终的结论我是想说,M 和 N 可以取任意值(总是存在一对满足这样条件的 M 和 N ),然后如果还想另外知道此时 a 和 b 的关系的话,也可以参考“如果...” 的后半段

(其实说白了基本上是其他几楼答案的汇总,不过更加 general 一些
118 天前
回复了 raysonlu 创建的主题 算法 关于余数,想求解是否有这样的关系
不知道楼主现在问题解决了没有……不过或许可以有另一种思路

首先可以把上面的等式重写为:(下面的操作都是在 Z/NZ 的群中)
aM ≡ b
bM ≡ a

因为 Z/NZ 是一个环,所以移项(以及等式两边同时加减)可得:
① (a + b)M ≡ (a + b)
② (a - b)M ≡ (b - a)

然后分类讨论。
若 M∈[0] 那么根据 ② 式就有:
b - a ≡ 0,即 a ≡ b
代入 ① 式可得
a + b ≡ 0
因此 a ≡ b ≡ 0

若 M∈[1] 那么根据 ② 式就有:
a - b ≡ b - a,即 a ≡ b

若 M∈[-1] 那么根据 ① 式就有:
a + b ≡ -(a + b),即 a + b ≡ 0

若 M∈Z/NZ - [0] - [1] - [-1],那么根据 ① 式就有:
a + b ≡ 0,即 a ≡ -b
将其带入 ② 中,可得
(-b - b)M ≡ 2b
-2bM ≡ 2b
2b(M + 1) ≡ 0
因为 M 不在 [-1] 中,所以 2b ≡ 0

总结:
- 如果 M 是 N 的倍数,那么 a 和 b 都是 N 的倍数
- 如果 M = kN + 1,k 为任意整数,那么 a 和 b 的余数相同
- 如果 M = kN - 1,k 为任意整数,那么 a + b 是 N 的倍数
- 如果 M 是其他情况,那么 a + b 是 N 的倍数且 2b 是 N 的倍数

可能还有些错误和不完整的地方
关于   ·   帮助文档   ·   API   ·   FAQ   ·   我们的愿景   ·   广告投放   ·   感谢   ·   实用小工具   ·   3136 人在线   最高记录 5497   ·     Select Language
创意工作者们的社区
World is powered by solitude
VERSION: 3.9.8.5 · 10ms · UTC 04:36 · PVG 12:36 · LAX 20:36 · JFK 23:36
♥ Do have faith in what you're doing.